

AM-IPE4k

Handbuch

Version: 1.1 Datum: 18.02.2020

Tel.:

Fax:

+49 371 334204 - 0 +49 371 334204 - 69

E-Mail: info@amac-chemnitz.de Web: www.amac-chemnitz.de

Revisionsübersicht

Datum	Revision	Änderung(en)
18.10.2017	1.0	Erstversion
18.02.2020	1.1	Tabelle 14: X1 - Stecker SUB-D 15-pin, SPI aktualisiert Tabelle 1. Optional: Aktiver Stromwandler gelöscht

© Copyright 2020 AMAC ASIC- und Mikrosensoranwendung Chemnitz GmbH

Unangekündigte Änderungen vorbehalten.

Wir arbeiten ständig an der Weiterentwicklung unserer Produkte. Änderungen des Lieferumfangs in Form, Ausstattung und Technik behalten wir uns vor. Aus den Angaben, Abbildungen und Beschreibungen dieser Dokumentation können keine Ansprüche abgeleitet werden. Jegliche Vervielfältigung, Weiterverarbeitung und Übersetzung dieses Dokumentes sowie Auszügen daraus bedürfen der schriftlichen Genehmigung durch die AMAC. Alle Rechte nach dem Gesetz über das Urheberrecht bleiben AMAC ausdrücklich vorbehalten.

Handbuch IPE4k

Inhaltsverzeichnis

	Ubersicht	
2	Eigenschaften	8
	Eingangssignale	
-	3.1 Messsystemanschluss	
	3.2 Beschreibung des Eingangsverstärkers	
	3.3 Signalanpassung und -korrektur	
	3.3.1 Amplitude und Offset	
	3.3.2 Korrektur periodischer Fehler	
	3.4 Referenzsignal	. 11
4	Aus- und Eingangssignale	. 12
	4.1 Ausgangssignale RS422–Modus ABZ	. 12
	4.2 Aus- und Eingangssignale RS485-Modus SSI	.12
	4.2.1 SSI-Schnittstelle	
	4.3 Fehlersignal	
	4.4 Triggersignal	
	4.5 Signal Teach	. 13
	4.6 Signal Zero	. 13
5	Interpolationsrate	. 14
	5.1 Flankenabstand für ABZ-Signale	. 15
	5.2 Digitale Hysterese für ABZ-Signale	
6	Kennwerte	
	Konfiguration der Stecker	
	7.1 Belegung Stecker X1 Modus ABZ / SPI	
	7.2 Belegung Stecker X1 Modus SSI	
	7.3 Belegung Stecker X2	
	7.4 USB-Schnittstelle X4	
	7.5 Belegung Buchse X6.	
	7.6 LED	
Ω	Konfiguration des AM-IP4k	
O	8.1 Konfiguration AM-IP4k mit "IP4kApp.exe"	
۵	Software – IP4k-Monitor	20 20
9	9.1 Übersicht	
	9.2 Systemanforderungen	
	9.3 Installation	
	9.4 Programmaufbau	
	9.5 Menüleiste	
	9.6 Hilfestellung	
	9.7 Messung	
	9.7.1 IP-Messung 1	
	9.7.2 IP-Messung 2	
	9.8 Konfiguration.	
	9.8.1 Sensor - Parameter / Experte	
	9.8.2 Hardware – Kommunikation	
	9.8.3 Software – Anzeige	
	9.8.4 Software – Streaming	. 30
	9.9 Oszilloskop	
10	Bestellinformation	
	10.1 Konfiguration im Auslieferungszustand	
11	Hardwareübersicht	
	11.1 Anschlüsse und Testpunkte	
	11.2 Abmessungen	
12	Notizen	
	11941291	. о⊤

Handbuch IPE4k

Tabellenverzeichnis

Tabelle 1: Ubersicht Eigenschaften	8
Tabelle 2: Beschreibung des Eingangsverstärkers	10
Tabelle 3: Signalkorrektur	
Tabelle 4: Register Korrektur	
Tabelle 5: Referenzsignal intern	11
Tabelle 6: Konfiguration des Referenzpunktes	11
Tabelle 7: Register CFGSSI (SSI-Mode)	13
Tabelle 8: Interpolationsrate	
Tabelle 9: Interpolationsrate mit erweitertem IR-Teiler	14
Tabelle 10: Minimaler Flankenabstand	
Tabelle 11: Konfiguration der digitalen Hysterese	15
Tabelle 12: Kennwerte	
Tabelle 13: X1- Stecker SUB-D 15-pin, ABZ	
Tabelle 14: X1 - Stecker SUB-D 15-pin, SPI	
Tabelle 15: X1 - Stecker SUB-D 15-pin → SSI	18
Tabelle 16: Stecker X2 Testsignale Sinus / Cosinus des Analogeingangs des AM-IP4k	19
Tabelle 17: USB-Schnittstelle X4	
Tabelle 18: X6- Buchse Eingangssignale SUB-D 15-pin	19
Tabelle 19: LED	
Tabelle 20: Menüleiste - Symbole	
Tabelle 21: Fehler LED's	
Tabelle 22: Status LED's	
Tabelle 23: Sensorüberwachung	
Tabelle 24: Wertebereich Sensorüberwachung	
Tabelle 25: Bestellinformation IPE4k	
Tabelle 26: Auslieferungszustand Hardwarekonfiguration	32
Tabelle 27: Auslieferungszustand Softwarekonfiguration	32

Handbuch IPE4k

Abbildungsverzeichnis

Abbildung 1: Blockschaltbild	7
Abbildung 2: Eingangssignal single-ended	9
Abbildung 3: Differentielles Eingangssignal	9
Abbildung 4: Messsystemanschluss	9
Abbildung 5: Referenzsignal	. 11
Abbildung 6: Ausgangssignale ABZ	.12
Abbildung 7: SSI	
Abbildung 8: SSI (Ringbetrieb)	
Abbildung 9: IP4k-Monitor - Startfenster	
Abbildung 10: Messung Interpolation 1	
Abbildung 11: Messung Interpolation 2	
Abbildung 12: Konfiguration Auslesen	
Abbildung 13: Sensor Parameter	
Abbildung 14: Sensor-Experte - CFG1	
Abbildung 15: Sensor-Experte - CFG2	
Abbildung 16: Sensor-Experte - CFG3	
Abbildung 17: Sensor-Experte - CFG4	
Abbildung 18: Sensor-Experte - SSI	
Abbildung 19: Sensor-Experte – PRE_ST/MT	
Abbildung 20: Sensor-Experte - IUW	
Abbildung 21: Sensor-Experte - LDR	
Abbildung 22: Sensor-Experte - LDR2	
Abbildung 23: Hardware - Kommunikation	
Abbildung 24: Software - Anzeige	
Abbildung 25: Software Streaming	
Abbildung 26: Oszilloskop - zeitliche Darstellung	
Abbildung 27: Oszilloskop - XY Darstellung	
Abbildung 28: Anschlüsse und Testpunkte	
Abbildung 29: Abmessungen	.33

Abkürzungs- und Begriffserklärung

AVSS – Masse analog (GND)

A - Rechtecksignal A (P = positiv; N = negativ)
 B - Rechtecksignal B (P = positiv; N = negativ)
 COS - Cosinussignal (P = positiv; N = negativ)

DNC – Pin offen lassen (do not connect)

DVDD – Versorgungsspannung digital (+ 5 V)

DVSS – Masse digital (GND)
EN – Fehlersignal negativ
EP – Fehlersignal positiv

MA – Master Takt SSI (P = positiv; N = negativ)
 REF – Referenzsignal (P = positiv; N = negativ)

RS422 – EIA-422 (leitungsgebundene differentielle serielle Datenübertragung)

SENSVDD – Versorgungsspannung analog (+ 5 V)
Sin – Sinussignal (P = positiv; N = negativ)

SLI – SSI Dateneingang (P = positiv; N = negativ)
 SLO – SSI-Datenausgang (P = positiv; N = negativ)

SPI – Serial Peripheral Interface
 SSI – Synchronous Serial Interface
 TEACH – Teachsignal des AM-IP4k
 TRG – Triggersignal des AM-IP4k

V0 – Mittenspannung

Vpp – Spannung, Spitze-Spitze

Z – Rechtecksignal Z (P = positiv; N = negativ)

ZER – Zerosignal des AM-IP4k

Handbuch IPE4k Übersicht

1 Übersicht

Die programmierbare Interpolationseinheit IPE4k ist zum Anschluss an inkrementale Weg- und Winkelmesssysteme mit sinusförmigen, um 90° phasenverschobenen Eingangssignalen vorgesehen. Diese kann an einer großen Reihe von Gebersystemen, die nach unterschiedlichsten Messprinzipien arbeiten, betrieben werden. Die IPE4k realisiert eine Unterteilung der Signalperioden bis zu 4096-fach. Die Interpolationseinheit arbeitet sowohl mit single-ended als auch mit differentiellen Eingangssignalen. Die Konfiguration erfolgt wahlweise über USB, das SSI-Interface oder den internen EEPROM des AM-IP4k. Weiterhin besteht die Möglichkeit, die Einheit mit einem SPI-Interface (3,3V oder 5V System) auszustatten. Eine AMAC-spezifische Gain- und Offsetregelung sowie die Möglichkeit einer Phasenkorrektur des internen AM-IP4k gewährleisten eine hohe Messgenauigkeit unter Industriebedingungen.

Die Einheit kann über die RS422-Schnittstelle an einen Standardzähler oder eine Steuerung (Auslieferungszustand) angeschlossen werden. Alternativ ist es möglich, die IPE4k über USB umzukonfigurieren und an einen SSI-Master anzuschließen. Die Betriebsspannung beträgt 5 VDC.

Durch die Funktionen des Interpolationsschaltkreises AM-IP4k, wie z.B. zuschaltbare analoge Filter oder eine digitale Hysterese, ist die Einheit hervorragend für den Einsatz in Steuerungssystemen geeignet.

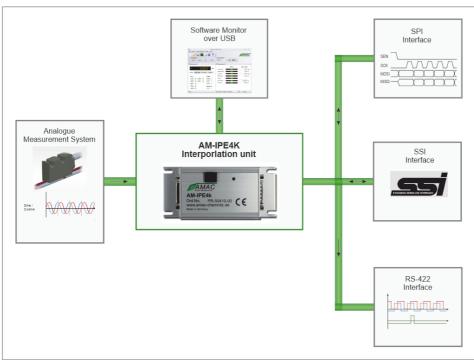


Abbildung 1: Blockschaltbild

Info:

Detaillierte Beschreibungen zu allen Funktionen können auch im Datenblatt des AM-IP4k nachgelesen werden.

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 7/34

Handbuch IPE4k Eigenschaften

2 Eigenschaften

Tabelle 1: Übersicht Eigenschaften

Tabelle 1: Übersicht Eigensch	naften
Schnittstellen	
Analogeingang	- Sinus- / Cosinus- / Referenzsignal; differentiell oder single-ended* - Nominalamplitude konfigurierbar auf 1 V_{pp} / 500 m V_{pp} / 250 m V_{pp} / 75 m V_{pp} - Maximale Eingangsfrequenz bis 220kHz
ABZ	 - 90°-Rechteckfolgen (A/B/Z). - Einstellbare Breite Indexsignal Z von ¼ oder 1 Periode A/B - Fehlersignal - Interruptsignal zum µC - Hilfssignale für Sensorabgleich
SPI1)	 - 30-Bit Zählwert / 16 Bit Multiturnwert - Datenrate bis zu 500.000 Messwerte/s - 9 Bit Signalüberwachung - Kompatibel zu Standard-SPI: 16 Bit, MSB first, bis zu 25 MHz - Aktivierbare Signalfilter zur Unterdrückung von Störimpulsen
SSI	 SSI 20 Bit oder 32 Bit 2 Bit Signalüberwachung Graycode / Binärcode Einstellbares Timing SSI Ringbetrieb
Weitere Eingänge	- Triggersignal zur Messwertspeicherung- Zero-Signal und Teach-Signal zu Einstellung und Speicherung der Nullpunktposition des Sensors
Stromausgang	 - Ansteuerung einer Laserdiode für optische Sensoren - geregelt über Betragsquadrat der Eingangssignale - Soll-Strom in 256 Stufen einstellbar
Konfigurationsoptionen	- Interner EEPROM - Serielle Schnittstelle SPI
Interpolation / Signalverarb	peitung
Interpolationsraten	- Basisinterpolationsrate: 4096, 4000, 3200, 2560 - konfigurierbarer Teiler: 1, 2, 4, 8, 16, 32, 64, 128 zusätzlich für Basis IR 4096 (256, 512, 1024) - frei wählbare Interpolationsrate über EEPROM-Tabelle, Grundeinstellung bei Auslieferung: 2560
Signalanpassung	 - AMAC-spezifischer Digitalregler für Offset, Regelbereich ±10% der Nominalamplitude - AMAC-spezifischer Digitalregler für Amplitude, Regelbereich Faktor 60% 120% Nominalamplitude - Digitales Potentiometer mit 64 Stufen zur Phasenkorrektur; Einstellbereich ±5° oder ±10° - Überwachung und Beurteilung der Qualität der Eingangssignale - Verhalten des IC bei Sensorfehlern programmierbar
Signalkorrektur	 Taumelkorrektur für periodische Fehler über 360° (Drehgeber) Signalformkorrektur für periodische Fehler innerhalb einer Sin-/Cos-Periode (auch für Lineargeber) Einzeln zu- und abschaltbar
Störunterdrückung	 Einstellbarer Tiefpass 10 kHz, 75 kHz, 250 kHz Digitale Hysterese zur Unterdrückung des Flankenrauschens am Ausgang Einstellbarer Mindestflankenabstand (Bandbreitenbegrenzung) am Ausgang
Referenzsignalverarbeitung	 Einstellbare Referenzpunktposition 0 360° Bestimmung der optimalen Referenzposition über SPI¹) oder Hilfssignale Verarbeitung abstandskodierter Referenzmarken Messwerttriggerung an der Referenzpunktposition
Weiteres	 2-stufiger Messwerttrigger Programmierbarer Timer (3.2 µs 420 ms) Verzögerungszeit zwischen Abtastung und Messwert konstant 2,35 µs ohne Signalkorrektur bzw. 3,95 µs mit Signalkorrektur für alle Auflösungen (je @40 MHz) Multiturnzähler
Wichtige Kennwerte	
Bauform	QFN56 (8 x 8 mm)
Betriebsspannung	3.3V
Temperaturbereich	-40 +125°C
Schnittstellenfrequenz	SPI 25 MHz, SSI 5 MHz

Handbuch IPE4k Eingangssignale

3 Eingangssignale

Als Eingangssignale für die IPE4k werden Spannungssignale mit sinusförmiger Abhängigkeit von der Messgröße (Weg bzw. Winkel) benötigt, welche bezogen auf eine Periode des Maßstabes eine Phasenverschiebung von 90° zueinander aufweisen. Ein drittes Eingangssignal dient als Referenzpunktsignal zur Festlegung des Nullpunktes auf dem Maßstab. Alle drei Eingangssignale können sowohl als single-ended als auch als Differenzsignale verarbeitet werden.

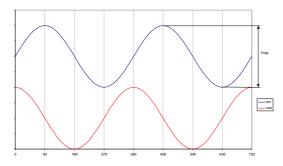


Abbildung 2: Eingangssignal single-ended

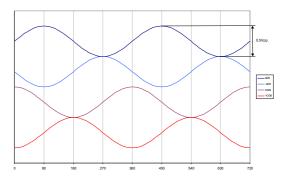


Abbildung 3: Differentielles Eingangssignal

3.1 Messsystemanschluss

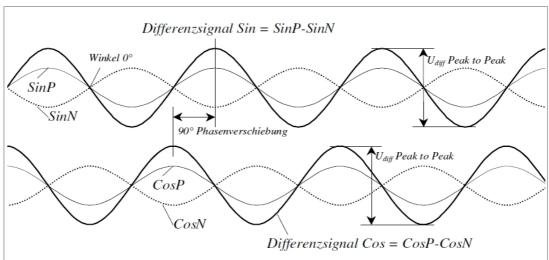


Abbildung 4: Messsystemanschluss

Handbuch IPE4k Eingangssignale

3.2 Beschreibung des Eingangsverstärkers

Die Verstärkung kann über das Register CFG1 gesetzt werden (siehe auch: Datenblatt AM-IP4k).

Tabelle 2: Beschreibung des Eingangsverstärkers

CFG1/GAIN(1:0)	00	01	10	11
Eingangsspannung differentielle Einspeisung je Eingang (m V_{pp}) $^{1)}$	500	250	125	37,5
Eingangsspannung für single-ended Einspeisung (mV $_{\rm pp})$ $^{\rm 2)}$	1000	500	250	75
Eingangsspannungsbereich für Interpolation $U_{\text{Diff}}\left(mV_{\text{pp}}\right)$	6001200	300600	150300	4590
Mittenspannung an Eingang	2.5	2.5	2.5	2.5
Mittenspannung an SMON/CMON nominal	1.1	1.1	1.1	1.1
Verstärkungsfaktor (2xU _{MON} / U _{DIFF}) ³⁾	1.27	2.54	5.24	16.76
Bit CFG2 / LP	empfohlen	empfohlen	empfohlen	notwendig

¹⁾ an jedem der Eingänge SINP, SINN, COSP, COSN

3.3 Signalanpassung und -korrektur

3.3.1 Amplitude und Offset

Die Eingangssignale werden einer internen Gain- und Offsetregelung unterzogen. Die Amplituden werden im Bereich von 60 % bis 120 % der Nominalamplitude ausgeregelt. Der Regelbereich für den Offset der beiden Eingangssignale beträgt ±10 % der Nominalamplitude. Die Phasenabweichung der Eingangssignale kann statisch über das interne digitale Potentiometer in einem Bereich von ± 5° bzw. ± 10° korrigiert werden.

Tabelle 3: Signalkorrektur

Parameter	in % bezogen auf nominale Amplitude (PEAK-PEAK)	in % bezogen auf ADC-Maximum (PEAK-PEAK)	in mV bezogen auf Standardsignal (0.66 Vpp)	in V am Pin SMON bzw. CMON (PEAK-PEAK)
Maximalwert am Eingang (Vmax _{pp})	150	100	990	1.90
Nominalwert des Eingangssignals($Vnom_{pp}$)	100	66.7	660	1.27
Garantierter Regelbereich Amplitude	60 120	40 80	400 800	0.76 1.52
Einstellbereich Amplitudenregler	56 168 ¹⁾	38 112 ¹⁾	370 1110 ¹⁾	0.71 2.13 1)
Vektorüberwachung 2)	30	20	200	0.38
Garantierter Regelbereich Offset (Sensor)	±15	±10	±70	±0.133
Einstellbereich Offsetregler	±25	±17	±165	±0.315

¹⁾ Der Einstellbereich für die Amplitude überschreitet den Aussteuerbereich des ADC.

3.3.2 Korrektur periodischer Fehler

Auf das abgetastete Signal können zusätzlich zwei Korrekturen zum Ausgleich periodischer Fehler angewandt werden. Nur für Drehgeber geeignet ist die 360°-Korrektur (Taumelkorrektur) für Positionsfehler über eine komplette Sensorumdrehung. Die SC-Korrektur3 (Signalformkorrektur) hingegen wertet eine einzelne Sinusperiode des Sensorsignals aus und kann somit auch bei Lineargebern angewandt werden. Die Korrekturen sind einzeln zu- und abschaltbar und können nur arbeiten, wenn eine gültige EEPROM-Konfiguration geladen ist. Diese muss neben den allgemeinen Einstellungen auch die für das jeweilige Eingangssignal gültigen Korrekturkoeffizienten enthalten.

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 10/34

²⁾ SE AMP2 = 1, SE HALB = 1

 $^{^{3)}}$ WIDE = 0, SE_AMP2 = 0, SE_HALB = 0

²⁾ Ein Summensignal aus Sinus und Cosinus wird überwacht. Siehe auch Abschnitt 7.6 Bit VLOW im Datenblatt des AM-IP4k.

Handbuch IPE4k Eingangssignale

Tabelle 4: Register Korrektur

Name	SPI-Adresse [Bit]	EEP-Adresse [Bit]	Funktion
DISKSC	0x13 [2]	0x09 [10]	'1' = SC-Korrektur aus
DISK360	0x13 [1]	0x09 [9]	'1' = 360°-Korrektur aus
Koeffizienten_360	0x400x5F	0xA00xBF	Koeffiziententabelle 360°-Korrektur
Koeffizienten_SC	0x600x7F	0xC00xDF	Koeffiziententabelle SC-Korrektur
Zahnzahl	0x1B [4:0]0x1A[7:0]	0x0D[12:0]	Zahnzahl für 360°-Korrektur
Korrekturwert SC	0x940x97	-	berechneter Korrekturwert SC-Korrektur
Korrekturwert 360	0x980x9B	-	berechneter Korrekturwert 360°-Korrektur
LDR_OUT	0x9C0x9F	-	Ausgabewert Laserdiodenregelung

Hinweis:

In der gegenwärtigen Softwarerelease des IP4k-Monitor ist die Ermittelung und Berechnung der Koeffizienten der Signalkorrekturen für periodische Fehler noch nicht integriert. Diese Features werden Bestandteil einer folgenden Softwarerelease sein.

3.4 Referenzsignal

Das Referenzsignal wird üblicherweise auch als Indexpunkt-, Nullpunkt- oder Z-Signal bezeichnet. Ein Referenzpunkt wird erkannt, sobald die Spannung am Eingangspin REFP größer als die Spannung am Eingangspin REFN ist.

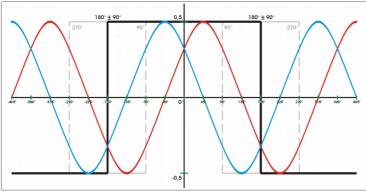


Abbildung 5: Referenzsignal

Info

Wird auf ein Referenzsignal am Eingang verzichtet, kann die Referenzpunktverarbeitung über die interne Konfiguration der IPE4k abgeschaltet werden.

Tabelle 5: Referenzsignal intern

Registerwerte CFG3 / DISZ	Bedeutung		
0	Referenzsignal am Ausgang aktiv		
1	Referenzsignal am Ausgang inaktiv		

Info

Die Form des Z-Signals am Ausgang der IPE4k kann durch die entsprechende Konfiguration im Schaltkreis an unterschiedliche Anwendungen angepasst werden. Wird für die Breite des Z-Signals ein Inkrement ausgewählt, entspricht der Z-Impuls am Ausgang exakt einem Viertel der Periodendauer der Signale "A" und "B". Der Z-Impuls erstreckt sich über eine ganze Periode, wenn vier Inkremente ausgewählt werden.

Tabelle 6: Konfiguration des Referenzpunktes

Registerwerte CFG1 / Z4	Bedeutung
0	1 Inkrement = 1/4 Periode
1	4 Inkremente = 1 Periode

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 11/34

4 Aus- und Eingangssignale

Es ist möglich, die IPE4k in 2 verschiedenen Modi zu betreiben. Der Modus ABZ ist der normale Zählerbetrieb mit ABZ-Signalen am Ausgang. Im Modus SSI (reiner Zählerbetrieb) können über die Schnittstelle Messwerte abgerufen werden. Die Modi können per PC mittels USB konfiguriert werden. Im Auslieferungszustand befindet sich die IPE4k im Modus ABZ.

4.1 Ausgangssignale RS422–Modus ABZ

Im Modus ABZ stehen als Ausgangssignale die für inkrementale Messgeber üblichen, phasenverschobenen Rechtecksignale, die mittels Einfach- oder Vierfachauswertung gezählt werden können, zur Verfügung. Ein synchrones Z-Signal wird erzeugt, wenn der Winkel 0° (siehe auch Abbildung 6) durchlaufen wird und die analoge Differenzeingangsspannung zwischen den Referenzsignaleingängen **REFP** und **REFN** positiv ist. Wenn die Differenzeingangsspannung permanent positiv ist, wird der Referenzpuls in jeder Periode der Eingangssignale einmal generiert. Die ABZ-Signale sind bei angeschlossenem USB inaktiv!

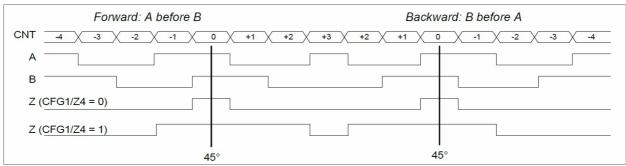


Abbildung 6: Ausgangssignale ABZ

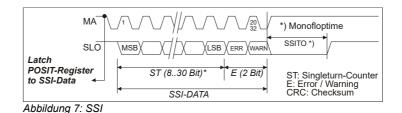
Info:

Die Signale A, B und Z verschieben sich zeitlich um 1 Inkrement, falls die digitale Hysterese aktiviert ist.

4.2 Aus- und Eingangssignale RS485-Modus SSI

Im Modus SSI ist es möglich, über die Schnittstelle Messwerte abzurufen. Das SSI-Interface ist bei angeschlossenem USB inaktiv!

4.2.1 SSI-Schnittstelle


Die SSI-Schnittstelle des AM-IP4k wird aktiviert, wenn während des Rücksetzens des IC der Eingang SEN auf L-Pegel gehalten wird. Zum Betrieb des AM-IP4k über SSI-Schnittstelle **muss** der EEPROM eine gültige Konfiguration enthalten, da für den Betrieb grundlegende Parameter im EEPROM enthalten sind. Die Bits SSITO und RING im Register CFGSSI werden zum Betrieb der Schnittstelle anhand der Systemparameter durch den Anwender im EEPROM initialisiert.

In den Daten des SSI-Protokolls wird das Register POSIT (siehe Datenblatt des AM-IP4k) mit einer Datenlänge von insgesamt 20 oder 32 Bit übertragen. Darin enthalten sind der Wert des Interpolationszählers (=Singleturn-Zähler) und des Multiturnzählers. Zusätzlich sind zwei Bits für Fehlerinformationen reserviert. Falls das Bit RING im Register CFGSSI gesetzt ist, kann der SSI-Master durch einen kontinuierlichen Takt die wiederholte Datenübertragung des gleichen Wertes erzwingen (SSI-Ringbetrieb).

Info:

Bei Verwendung des Multiturnzählers ist es sinnvoll, eine der Interpolationsraten 256, 128, 64 oder 32 einzustellen, da der übergeordnete Schnittstellenmaster in der Regel nur mit binären Auflösungen arbeitet.

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC

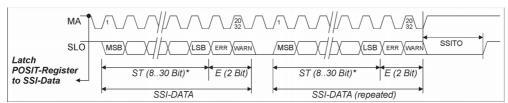


Abbildung 8: SSI (Ringbetrieb)

Tabelle 7: Register CFGSSI (SSI-Mode)

industrial desired and the second sec						
Bit	Bedeutung Herstellerkonfiguration		Anwenderkonfiguration			
SSITO	SSI-Timeout	20µs bei 40 MHz	SSITO = (Timeout· f_{OSZ})-3			
RING	SSI-Ringbetrieb	Ringbetrieb	Betriebsart des SSI-Masters			
SSI20	Gesamtlänge der Daten	32 Bit	0 für 32 Bit / 1 für 20 Bit			

4.3 Fehlersignal

Ein Fehlersignal wird generiert, wenn die Plausibilität der Eingangssignale nicht gegeben ist. Das Fehlersignal wird weiterhin generiert, wenn die Eingangsfrequenz so groß ist, dass die Rechtecksignale nicht mehr folgen können bzw. die maximale Eingangsfrequenz überschritten wird. Prinzipiell wird empfohlen, das Fehlersignal für die Datenverarbeitung zu nutzen. Weitere Informationen bezüglich des Fehlersignals stehen im Kapitel 7.6 des Datenblatts des AM-IP4k.

Info:

Wurde das Fehlersignal am Ausgang detektiert, so sind das aktuelle Messergebnis und alle nachfolgenden Ergebnisse zu verwerfen. Nach Beseitigung der Fehlerursache und dem Rücksetzen ist für Absolutwertmessungen ein erneutes Überfahren des Referenzpunktes notwendig!

4.4 Triggersignal

Das Triggersignal kann genutzt werden, um den aktuellen Zählwert in einem Triggerhalteregister des AM-IP4k abzuspeichern. Bei Lesezugriffen auf das Register MVAL wird dann jeweils der "älteste" Wert aus den Triggerhalteregistern bereitgestellt.

4.5 Signal Teach

Mit Hilfe des Signals Teach ist es möglich eine Nullpunktposition im EEPROM des AM-IP4k zu speichern. Das Signal muss mittels des Konfigurationsbits TEAN im Register CFG2 aktiviert werden. Weitere Informationen befinden sich im Datenblatt des AM-IP4k im Kapitel 7.10.

4.6 Signal Zero

Über das Signal Zero können der interne Zähler des AM-IP4k und bei einem aufgetretenen Fehlerfall das entsprechende Fehlerbit zurückgesetzt werden. Im Anschluss ist für Absolutwertmessungen ein erneutes Überfahren des Referenzpunktes notwendig!

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC

Handbuch IPE4k Interpolationsrate

5 Interpolationsrate

Die Interpolationsrate (IRATE) kann zwischen den Werten in Tabelle 8 gewählt werden. Als Interpolationsrate wird hier die Anzahl der Inkremente verstanden, in die eine Sinusperiode/Cosinusperiode der Eingangssignale unterteilt wird. Dies entspricht der Anzahl der Flankenwechsel auf den A/B-Ausgängen pro Eingangssignalperiode. Die Anzahl der Rechteckperioden an den Ausgängen A und B beträgt ¼ der Interpolationsrate.

Die Interpolationsrate wird im Register CFIG1/IR festgelegt. Es gibt vier Basisinterpolationsraten: 4096, 4000, 3200 und 2560. Die letztgenannte hat einen voreingestellten Wert, der durch den Nutzer geändert werden kann. Die nachfolgend aufgeführten Interpolationsraten entstehen durch die Division der Basisinterpolationsraten durch die möglichen Teiler 2, 4, 8, 16, 32, 64 und 128. Ist das Ergebnis der Division nicht ganzzahlig, kommt es zu ungültigen Werten.

Tabelle 8: Interpolationsrate

IR(2:0) IR(4:3)	000	001	010	011	100	101	110	111
10	4096	2048	1024	512	256	128	64	32
00	4000	2000	1000	500	250 ¹⁾	125 ¹⁾	ungültig	ungültig
01	3200	1600	800	400	200	100	50 ¹⁾	25 ¹⁾
11 ²⁾	2560 ³⁾	1280	640	320	160	80	40	20

¹⁾ Die Interpolationsraten dürfen nur in der Zählerbetriebsart verwendet werden. Die ABZ-Signale sind dann ungültig.

Unter Benutzung der Konfiguration IRDiv2 in CFG2 sind die Interpolationsraten 16, 8 und 4 einstellbar.

 $IR_sum(3:0) = IR(2:0) + IRDiv2(2:0)$

Tabelle 9: Interpolationsrate mit erweitertem IR-Teiler

IR_sum	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
10	4096	2048	1024	512	256	128	64	32	16	8	4
00	4000	2000	1000	500	250 ¹⁾	125 ¹⁾	ungültig	ungültig	ungültig	ungültig	ungültig
01	3200	1600	800	400	200	100	50 ¹⁾	25 ¹⁾	ungültig	ungültig	ungültig
11	2560	1280	640	320	160	80	40	20	ungültig	ungültig	ungültig

¹⁾ Die Interpolationsraten dürfen nur in der Zählerbetriebsart verwendet werden. Die ABZ-Signale sind dann ungültig.

²⁾ Adresse für frei wählbare Interpolationsrate (EEPROM)

³⁾ Grundeinstellung für frei wählbare Basisinterpolationsrate

Handbuch IPE4k Interpolationsrate

5.1 Flankenabstand für ABZ-Signale

Der minimale Flankenabstand t_{pp} der Ausgangssignale A, B und Z kann zwischen $1/f_{osz}$ und $128/f_{osz}$ in binären Schritten eingestellt werden. Diese Funktion kann genutzt werden, um die Bandbreite der IPE4k für langsame RS422-Zählgeräte zu begrenzen (siehe Datenblatt AM-IP4k Kapitel 7.4.2, 7.5).

Tabelle 10: Minimaler Flankenabstand

Minimaler Flankenabstand tpp	Registerwerte CFG1 – TPP(2:0)
1/fosz	000 (0)
2/fosz	001 (1)
4/fosz	010 (2)
8/fosz	011 (3)
16/fosz	100 (4)
32/fosz	101 (5)
64/fosz	110 (6)
128/fosz	111 (7)

5.2 Digitale Hysterese für ABZ-Signale

Um das Flankenrauschen der Ausgangssignale bei niedrigen Eingangsfrequenzen sowie Stillstand zu unterdrücken, kann im Register CFG1 des AM-IP4k eine digitale Hysterese für A, B und Z aktiviert werden. Damit wird das Schalten der Ausgänge bei statischen Eingangssignalen verhindert. Alle Ausgangssignale werden hierbei um den eingestellten Hysteresewert verzögert.

Tabelle 11: Konfiguration der digitalen Hysterese

Registerwerte CFG1 DH(2:0)	Bedeutung
0	digitale Hysterese deaktiviert
001 to 111	digitale Hysterese aktiviert und Einstellung des Hysteresewertes

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 15/34

Handbuch IPE4k Kennwerte

6 Kennwerte

Tabelle 12: Kennwerte

Betriebsbedingungen	Min.	Nom.	Max.	Unit
Betriebsspannung	4.75	5.0	5.5	V
Stromaufnahme		110	230	mA
Versorgungsspannung intern		3.3		V
Mittenspannung an ∨м_о∪т		2,5		V
Ausgangsstrom an VM_OUT			30	mA
Betriebstemperatur	- 40		85	°C
Eingangsteil	Min.	Nom.	Max.	Unit
Eingangsfrequenz			220	kHz
Phasenverschiebung zwischen SIN und COS		90		0
$Amplitude \ SINN \Leftrightarrow SINP \ / \ COSN \Leftrightarrow COSP$	0.075	1.0	1.2	V_{pp}
Phasenkorrektur	4.5 / 9	5 / 10	9 / 11	o
Oszillatorfrequenz fosz		40		MHz
Interpolation	Min.	Nom.	Max.	Unit
Interpolationsrate		4 4	1096	
minimale Intervallzeit tpp A / B-Signal	1 / fosz		128 / fosz	ns
Interpolationsgenauigkeit		± 0.7		
Verzögerungszeit (A / B / Z)	155 / fosz		187 / fosz	ns
Weitere Kennwerte	Gehäuse aus	Strangpresspro	fil	
Schutzgrad	IP20			
Anschlüsse	SUB- D, 15-pin			
Abmessungen	55 mm x 80 mm	m x 20 mm		

7 Konfiguration der Stecker7.1 Belegung Stecker X1 Modus ABZ / SPI

Tabelle 13: X1- Stecker SUB-D 15-pin, ABZ

Pin	Name	Signal	Bedeutung
1	AP	Ausgang	Rechtecksignal A positiv
2	VSS	Eingang	GND
3	BP	Ausgang	Rechtecksignal B positiv
4	VDD	Eingang	Spannungsversorgung 5 V
5	EP	Ausgang	Fehlersignal E positiv
6	nTEACH	Eingang mit pull-up	Teachsignal; fallende Flanke aktiv
7	ZN	Ausgang	Rechtecksignal Z negativ
8	nTRIG	Eingang mit pull-up	Triggersignal; fallende Flanke aktiv
9	AN	Ausgang	Rechtecksignal A negativ
10	VSS	Eingang	GND
11	BN	Ausgang	Rechtecksignal B negativ
12	VDD	Eingang	Spannungsversorgung 5 V
13	nZERO	Eingang mit pull-up	Zerosignal; fallende Flanke aktiv
14	ZP	Ausgang	Rechtecksignal Z positiv
15	EN	Ausgang	Fehlersignal E negativ

Tabelle 14: X1 - Stecker SUB-D 15-pin, SPI

rabelle	14. XI - SIECK	er 306-0 15-piri, 3P1	
Pin	Name	Signal	Bedeutung
1	MISO	Ausgang	SPI Signal MISO
2	VSS	Eingang	GND
3	SEN	Ausgang	SPI Signal SEN
4	VDD	Eingang	Spannungsversorgung 5 V
5	EP	Ausgang	Fehlersignal E positiv
6	nTEACH	Eingang mit pull-up	Teachsignal; fallende Flanke aktiv
7	ZN	Ausgang	Rechtecksignal Z negativ
8	nTRIG	Eingang mit pull-up	Triggersignal; fallende Flanke aktiv
9	MOSI	Eingang	SPI Signal MOSI
10	VSS	Eingang	GND
11	SCLK	Ausgang	SPI Signal SCLK
12	VDD	Eingang	Spannungsversorgung 5 V
13	nZERO	Eingang mit pull-up	Zerosignal; fallende Flanke aktiv
14	ZP	Ausgang	Rechtecksignal Z positiv
15	EN	Ausgang	Fehlersignal E negativ

7.2 Belegung Stecker X1 Modus SSI

Tabelle 15: X1 - Stecker SUB-D 15-pin → SSI

Pin	Name	Signal	Bedeutung
1	SLOP	Ausgang	Signal SLO positiv
2	VSS	Eingang	GND
3	SLIP	Eingang	Signal SLI positiv
4	VDD	Eingang	Spannungsversorgung 5V
5	SENN	Eingang	Signal SEN negativ 1)
6	nTEACH	Eingang mit pull-up	Teachsignal; fallende Flanke aktiv
7	MAN	Eingang	Signal MA negativ
8	nTRIG	Eingang mit pull-up	Triggersignal; fallende Flanke aktiv
9	SLON	Ausgang	Signal SLO negativ
10	VSS	Eingang	GND
11	SLIN	Eingang	Signal SLI negativ
12	VDD	Eingang	Spannungsversorgung 5V
13	nZERO	Eingang mit pull-up	Zerosignal; fallende Flanke aktiv
14	MAP	Eingang	Signal MA positiv
15	SENP	Eingang	Signal SEN positiv 1)

¹⁾ Die Signale müssen nicht beschaltet werden. Die Konfiguration der Schnittstelle mit Hilfe des Signals SEN erfolgt intern.

7.3 Belegung Stecker X2

Tabelle 16: Stecker X2 Testsignale Sinus / Cosinus des Analogeingangs des AM-IP4k

Pin	Name	Signal	Bedeutung
1	SMON	Ausgang	Testsignal Sinus-Kanal des Analogeingangs des AM-IP4k
2	CMON	Ausgang	Testsignal Cosinus-Kanal des Analogeingangs des AM-IP4k
3	GND	Eingang	analoge Masse als Bezugspotential für Messungen

7.4 USB-Schnittstelle X4

Tabelle 17: USB-Schnittstelle X4

Pin	Name	Bedeutung
1	+ USB	+ 5 V
2	USBD -	Data -
3	USBD +	Data +
4	ID	-
5	- USB	GND

7.5 Belegung Buchse X6

Tabelle 18: X6- Buchse Eingangssignale SUB-D 15-pin

Pin	Name	Signal	Bedeutung
1	SINP	Eingang	Sinus positiv
2	AVSS	Ausgang	GND
3	COSP	Eingang	Cosinus positiv
4	SENSVDD	Ausgang	Versorgungsspannung 5 V (3,3V über Bestückungsvariante)
5	-	-	-
6	-	-	-
7	REFN	Eingang	Referenzsignal negativ
8	-	-	-
9	SINN	Eingang	Sinus negativ
10	AVSS	Ausgang	GND
11	COSN	Eingang	Cosinus negativ
12	SENSVDD	Ausgang	Versorgungsspannung 5 V (3,3V über Bestückungsvariante)
13	VM_OUT	-	SENSVDD/2
14	REFP	Eingang	Referenzsignal positiv
15	-	-	-

7.6 LED

Tabelle 19: LED

LED	Werte	Bedeutung	
nERR	rot (LD6 aus)	Fehler ist aufgetreten	
LD4 LD6	grün (LD4 aus)	Normaler Betrieb	
Power LED	aus	IPE4k nicht aktiv	
LD3	grün	IPE4k aktiv	

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 19/34

8 Konfiguration des AM-IP4k

8.1 Konfiguration AM-IP4k mit "IP4kApp.exe"

Nach einem Reset des Schaltkreises AM-IP4k werden alle Register mit ihren Standardwerten initialisiert. Wurde die IPE4k entsprechend der Anleitung mit einem PC über USB verbunden, können alle Einstellungen des AM-IP4k einfach und übersichtlich mittels der PC-Software "IP4k-Monitor" vorgenommen werden. Außerdem kann mit dem Programm auch die aktive Schnittstelle an X1 ausgewählt werden. Das Programm steht auf unserer Website www.amac-chemnitz.de als Download zur Verfügung.

Hinweis

Um Kommunikationsschwierigkeiten mit dem PC zu verhindern, ist bei der IPE4k die Hardwareadresse auf 0x00 festgelegt und darf aus diesem Grund in der Software nicht geändert werden.

9 Software – IP4k-Monitor

9.1 Übersicht

Mit Hilfe der IP4k-Monitor-Software ist es möglich, die Parameter und Kennwerte des in der IPE4k verbauten AM-IP4k zu visualisieren und zu steuern. Die Software ist für Windows Betriebssysteme ausgelegt und kommuniziert direkt über USB (Umsetzung USB zu SPI auf dem Board).

9.2 Systemanforderungen

Um die ordnungsgemäße Ausführung des Programms zu gewährleisten, sollte Ihr PC bzw. Notebook folgende Hardware-Mindestanforderungen keinesfalls unterschreiten sowie eines der aufgelisteten Betriebssysteme besitzen:

Hardware:

- · Prozessor: 2 GHz oder höher (empfohlen: Mehrkern-System)
- mind. 512 MB Arbeitsspeicher
- mind. 1 GB freier Festplattenspeicher (für Messdaten)
- Grafikkarte mit 24 Bit Farbtiefe (empfohlen: 32 Bit)
- Auflösung: 1024x768 Pixel oder höher
- · freie USB-Schnittstelle

unterstützte Betriebssysteme¹⁾:

- Microsoft Windows® Server 2003
- Microsoft Windows[®] Vista
- Microsoft Windows® 7
- Microsoft Windows[®] 8.1
- Microsoft Windows® 10 und höher

9.3 Installation

Die Installation der Software und der benötigten USB-Treiber der IPE4k erfolgt über die ausführbare Datei (Installer): 50410-SW-x-x-IP4k-monitor Setup.exe

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 20/34

¹¹Microsoft und Windows® sind eingetragene Warenzeichen der Microsoft Corporation in den USA und anderen Ländern.

9.4 Programmaufbau

Die grafische Oberfläche des Konfigurationsprogramms unterteilt sich in eine Dialogleiste, eine Statusleiste und die zwei Bereiche für die Anzeige der Messwerte. Die Dialogleiste befindet sich direkt unter der Symbolleiste. In diesem Bereich kann eine Messung gestartet sowie die Zeit für den Abfrageintervall gewählt und Kommandos zum Rücksetzen der z. B. Zähler ausgelöst werden. Die verfügbaren Messwerte und Statusangaben des AM-IP4k werden in den beiden Fenstern für die Messungen dargestellt. Dafür muss eine Messung über die Dialogleiste gestartet sein. Die Aktualisierung der Messwerte erfolgt im eingestellten Abfrageintervall.

Nach dem Start der Applikation, wie in Abbildung 9 dargestellt, überprüft die Software das Vorhandensein der Hardware. Wird eine Hardware erkannt, erscheint dessen Kennung in der Statusleiste. Ist der Schaltkreis korrekt angeschlossen und aktiviert, dann wird in der Statuszeile zusätzlich die Schaltkreisbezeichnung (z.B: "IC: AM-IP4k") angezeigt. Falls kein Schaltkreis erkannt wurde, erscheint "unbekannt".

Abbildung 9: IP4k-Monitor - Startfenster

9.5 Menüleiste

Tabelle 20: Menüleiste - Symbole

Symbol	Name	Bedeutung
	Neues Dokument	Erstellt ein leeres Dokument.
	Dokument öffnen	Liest die Programmeinstellungen aus einem bestehendem Dokument.
	Dokument speichern	Speichert die Programmeinstellungen in einem Dokument.
MM	Oszilloskop-Ansicht	Öffnet die Oszilloskop-Ansicht. Siehe Kapitel 9.9.
	Daten exportieren	Export der Messdaten in eine Datei.
	Konfiguration	Öffnet das Konfigurationsfenster. Siehe Kapitel 9.8.
?	Informationen	Zeigt Informationen zum Programm und zur angeschlossenen Hardware.

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 21/34

9.6 Hilfestellung

Bei der Entwicklung des Konfigurationsprogramms wurde besonders auf Übersichtlichkeit und Selbsterklärung der grafischen Oberfläche geachtet. Viele Elemente der Bedienoberfläche zeigen genauere Erklärungen, wenn Sie den Mauszeiger darüber positionieren (Tooltip oder Statustext).

Die im Programm vorgenommenen Einstellungen können in einem Setup-Dokument mit der Erweiterung ".ip4k" gespeichert und wiederhergestellt werden.

9.7 Messung

Wurde ein AM-IP4k Schaltkreis mit dem PC verbunden und durch die Software erkannt, kann über den Button "Start" eine Live-Messung gestartet werden. Dabei werden die Anzeigen in den beiden Fenstern für die Messung entsprechend der eingestellten Intervallzeit aktualisiert. Die Angabe für das Messintervall ist eine Richtangabe. Das tatsächliche Messintervall ist abhängig von der Konfiguration von Software, Schnittstelle sowie von der PC-Leistungsfähigkeit und Auslastung.

9.7.1 IP-Messung 1

Abbildung 10: Messung Interpolation 1

Im Fenster IP-Messung 1 wird bei gestarteter Messung der aktuelle Zählwert angezeigt. Es kann ausgewählt werden zwischen Messwert (Register MVAL des AM-IP4k), Zählwert (Register CNT) und Position (Register POSIT, siehe Registerbeschreibung im Datenblatt des AM-IP4k). Bei Auswahl der Position können Single- und Multiturn-Informationen, abhängig von der Schaltkreis-Konfiguration (Register CFGSSI/MTBIT, CFGSSI/STBIT), dargestellt werden .

Die Anzeige der Fehler-LED's ist abhängig von der Konfiguration des Schaltkreises. Die Fehler können im Konfigurationsregister CFG1 einzeln aktiviert, deaktiviert oder dauerhaft gespeichert werden. Das Verhalten der LED's wird dementsprechend angepasst. Die LED's für Fehler, Trigger und Referenzpunktstatus entsprechen den Informationen im Statusregister STAT des AM-IP4k. Die Bedeutung der Fehler-LED's ist in Tabelle 21 aufgeführt. Die Status-LED's sind in Tabelle 22 beschrieben.

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 22/34

Tabelle 21: Fehler LED's

LED	Bedeutung
EVLOW	Grün: Kein Vektorfehler. Rot: Der aus Cosinus- und Sinussignal gebildete Signalvektor ist zu klein. Ursache ist meist ein teilweiser bzw. vollständiger Sensorabriss. Für Signale mit sehr großem Offset bei gleichzeitig kleiner Amplitude kann dieser Fehler ebenfalls auftreten.
ECADC	Grün: Kein ADC-Fehler am Cosinussignal. Rot: Der AD-Wandler für das Cosinussignal ist übersteuert. Ursache ist eine zu große Signalamplitude. Für Signale mit sehr großem Offset bei gleichzeitig großer Amplitude kann dieser Fehler ebenfalls auftreten.
ESADC	Grün: Kein ADC-Fehler am Sinussignal. Rot: Der AD-Wandler für das Sinussignal ist übersteuert. Ursache ist eine zu große Signalamplitude. Für Signale mit sehr großem Offset bei gleichzeitig großer Amplitude kann dieser Fehler ebenfalls auftreten.
EFAST	Grün: Kein Geschwindigkeitsfehler. Rot: Die Eingangsfrequenz ist so hoch, dass die A/B-Signale nicht gebildet werden können bzw. keine Richtungserkennung mehr möglich ist. Die überwachte Frequenz unterscheidet sich bei Betrieb mit internem Zähler bzw. bei Verwendung der Rechteckausgänge A,B,Z.
EABZ	Grün: Kein Fehler an A,B,Z. Rot: Die Signale A, Bund Z sind ungültig. Ursache ist eine zu hohe Eingangsfrequenz. Die überwachte Frequenz ist abhängig vom eingestellten minimalen Flankenabstand tpp. Dieser Fehler tritt auch auf, wenn die Interpolationsrate oder der minimale Flankenabstand geändert wird. Für die Zählerbetriebsart wird die Erkennung dieses Fehlers automatisch deaktiviert
ECGAIN	Grün: Kein Amplitudenfehler am Cosinussignal. Rot: Der Verstärkungsregler für das Cosinussignal hat seine Grenze erreicht. Ursache ist eine zu kleine Signalamplitude, ein teilweiser oder ein vollständiger Sensorabriss.
ESGAIN	Grün: Kein Amplitudenfehler am Sinussignal. Rot: Der Verstärkungsregler für das Sinussignal hat seine Grenze erreicht. Ursache ist eine zu kleine Signalamplitude, ein teilweiser oder ein vollständiger Sensorabriss.
ECOFF	Grün: Kein Offsetfehler am Cosinussignal. Rot: Der Offsetregler für das Cosinussignal hat seine Grenze erreicht. Ursache ist ein zu großer Signaloffset, ein ungültiger Wert zur Initialisierung des Reglers, ein teilweiser oder ein vollständiger Sensorabriss.
ESOFF	Grün: Kein Offsetfehler am Sinussignal. Rot: Der Offsetregler für das Sinussignal hat seine Grenze erreicht. Ursache ist ein zu großer Signaloffset, ein ungültiger Wert zur Initialisierung des Reglers, ein teilweiser oder ein vollständiger Sensorabriss.
EKOVL	Grün: Kein Fehler bei der Berechnung der Korrekturwerte. Rot: Der berechnete Korrekturwert ist ungültig. Ursache dafür ist eine falsche Konfiguration der Korrekturkoeffizienten. Es sollte ein erneutes Einmessen des Sensors durchgeführt werden.

Tabelle 22: Status LED's

Tabelle 22: Status LED's			
LED	Bedeutung		
TRGPIN	Trigger Status (Pin) aktiv: Der nächste von Register MVAL gelesene Messwert wurde von Pin TRG getriggert. inaktiv: Register MVAL enthält den aktuellen Positionswert (Register POSIT).		
TRGTIM	Trigger Status (Timer) aktiv: Der nächste von Register MVAL gelesene Messwert wurde vom Timer getriggert. inaktiv: Register MVAL enthält den aktuellen Positionswert (Register POSIT).		
TRGZ	Trigger Status (Referenzpunkt) aktiv: Der nächste von Register MVAL gelesene Messwert wurde vom Referenzsignal getriggert. inaktiv: Register MVAL enthält den aktuellen Positionswert (Register POSIT).		
TRGOVL	Trigger Überlauf aktiv: Überlauf Triggerhalteregister. Ein Triggerereignis ging verloren. inaktiv: Kein Überlauf des Triggerhalteregisters. Es werden maximal zwei Triggerereignisse gespeichert.		
ZSTAT	Referenzpunkt Status: aktiv: Die Referenzmarke des Maßstabes wurde überfahren. AM-IP4k und Maßstab arbeiten synchron. inaktiv: Referenzmarke des Maßstabes wurde noch nicht überfahren oder Bezug von Zählwert und Referenzmarke ging aufgrund eines Fehlers verloren.		

9.7.2 IP-Messung 2

Im Fenster IP-Messung 2 wird die Qualität der Sensorsignale anhand der Regler-Parameter mittels "LED-Leisten" dargestellt. Außerdem erfolgt eine Überwachung der Eingangsspannung an den A/D-Wandlern, sodass eine eventuelle Übersteuerung des ADC in der Software visualisiert wird. Die Bedeutung der Anzeigeelemente ist in den Tabellen 23 und 24 aufgezeigt.

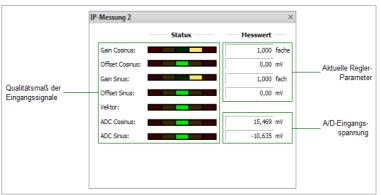


Abbildung 11: Messung Interpolation 2

Tabelle 23: Sensorüberwachung

Name	Art	Bedeutung
Gain Cosinus	LED-Leiste	Reglerkorrekturwert für die Signalamplitude.
Gain Sinus	Messwert	Reglerwert für die Verstärkung des Eingangssignals.
Offset Cosinus	LED-Leiste	Offset-Korrekturwert des Reglers.
Offset Sinus	Messwert	Reglerwert für die Offset-Korrektur.
Vektor	LED-Leiste	Vektorbetrag der Eingangssignale.
ADC-Cosinus	LED-Leiste	Wertebereich des AD-Wandlers.
ADC-Sinus	Messwert	Aktuelle Eingangsspannung am A/D-Wandler.

Tabelle 24: Wertebereich Sensorüberwachung

Anzeige	Bedeutung
LED-Leiste grün gelb links gelb rechts rot links rot rechts	Wert liegt im erlaubten Bereich ist zu klein, Sensorsignal sollte abgeglichen werden ist zu groß, Sensorsignal sollte abgeglichen werden ist zu klein, Messergebnisse fehlerhaft ist zu groß, Messergebnisse fehlerhaft

9.8 Konfiguration

Nachdem der Schaltkreis erfolgreich erkannt wurde, versucht die Software die aktuelle Konfiguration auszulesen. Der Anwender hat die Möglichkeit, dies zu bestätigen bzw. eine neue Konfiguration anzulegen (Datei -> Neu; Symbol "weißes Blatt"). Darüber hinaus kann auch eine vorher gespeicherte Konfiguration mit der Erweiterung *.ip4k geladen werden. (Datei -> Öffnen, Symbol Ordner).

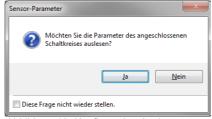


Abbildung 12: Konfiguration Auslesen

Das Konfigurationsfenster kann über das Menü (Extras -> Konfiguration) oder über die Werkzeugleiste geöffnet werden. Es stehen dann verschiedene Reiter für die Basis- und erweiterte Konfiguration des Schaltkreises, sowie für Softwareeinstellungen zur Verfügung.

Die Konfiguration wird beim Speichern im internen EEPROM des Schaltkreises abgelegt und automatisch validiert. Damit wird die Konfiguration beim Power-On des IC oder nach Reset aus dem EEPROM geladen und verwendet. Die Gültigkeit der Konfiguration ist an EEPROM Adresse 0x00 abgelegt. Soll für den Betrieb des Schaltkreises die Herstellerkonfiguration verwendet werden, muss zuvor der EEPROM Inhalt invalidiert werden. Dafür ist im Konfigurationsfenster ("Sensor – Experte") eine Schaltfläche vorhanden. Außerdem wird die EEPROM Gültigkeit angezeigt. Bei Konfiguration des Schaltkreises von außen (CFGPIN) wird für alle nicht über Pins konfigurierten Eigenschaften die Herstellerkonfiguration verwendet. Der programmierte EEPROM Inhalt wird dann nicht in die Konfiguration übernommen.

9.8.1 Sensor - Parameter / Experte

In der ersten Registerkarte der Konfiguration Sensor-Parameter können grundsätzliche Einstellungen wie z.B. Interpolationsrate und Eingangsamplitude eingestellt werden. Damit besteht die Möglichkeit, die Grundfunktionen des AM-IP4k ohne großen Aufwand umzuschalten.

Das Speichern der gewählten Einstellungen im EEPROM des AM-IP4k erfolgt über den Button "Programmieren". Der Button "Verifizieren" dient dem Vergleich der Daten zwischen Software und EEPROM und liefert am Ende das Ergebnis des Vergleichs. Bei festgestellten Unterschieden besteht über den Button "Lesen" die Möglichkeit, die Werte des EEPROM zu Lesen und in die Anzeige der Software zu übernehmen.

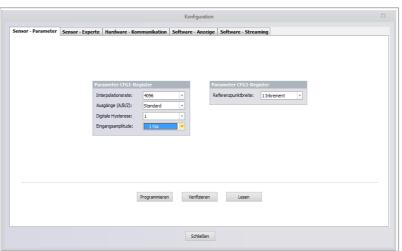


Abbildung 13: Sensor Parameter

Für weitergehende Konfigurationen des AM-IP4k ist die Registerkarte Sensor-Experte ausgelegt. Diese orientiert sich direkt an den Definitionen der Konfigurationsregister CFG1-4, CFGSSI, PRE ST/MT, CFGIUW, CFGLDR und CFGLDR2, welche darüber einzeln programmiert werden können. Die ausführliche Beschreibung und Erklärung der einzelnen Parameter können dem Datenblatt entnommen werden. Das Lesen, Programmieren und Verifizieren der Parameter kann analog der Vorgehensweise bei der Registerkarte Sensor-Parameter durchgeführt werden.

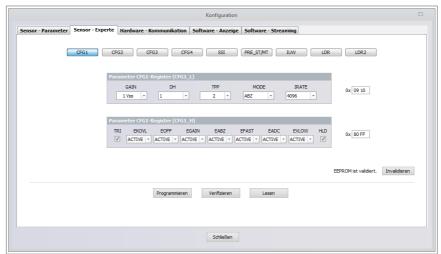


Abbildung 14: Sensor-Experte - CFG1

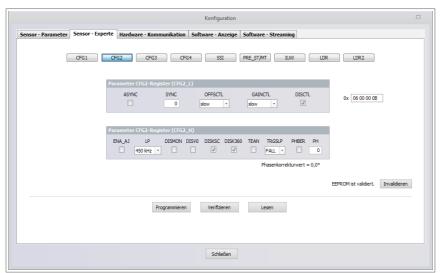


Abbildung 15: Sensor-Experte - CFG2

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC

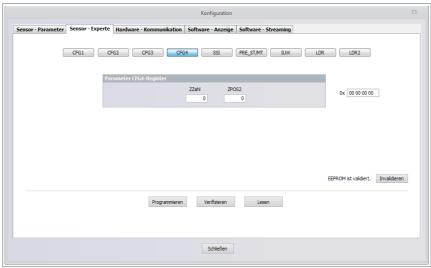


Abbildung 17: Sensor-Experte - CFG4

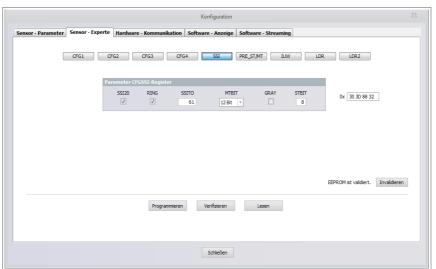


Abbildung 18: Sensor-Experte - SSI

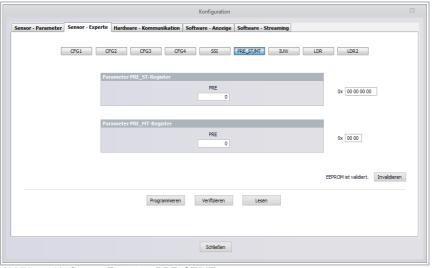


Abbildung 19: Sensor-Experte – PRE_ST/MT

Hinweis:

Die Nutzung der Laserdiodenregelung des AM-IP4k ist in der gegenwärtigen Hardwarerelease der AM-IPE4k nicht möglich.

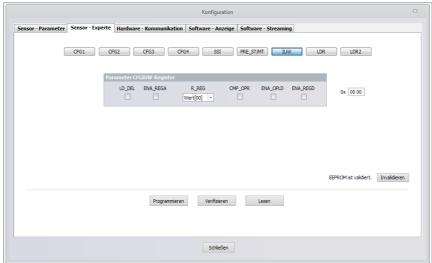


Abbildung 20: Sensor-Experte - IUW

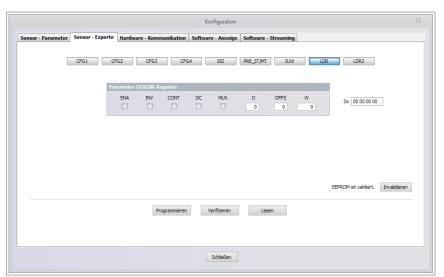


Abbildung 21: Sensor-Experte - LDR

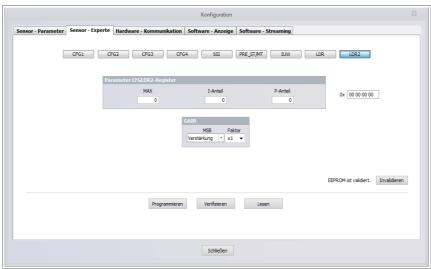


Abbildung 22: Sensor-Experte - LDR2

9.8.2 Hardware - Kommunikation

Die Einstellungen für die Kommunikation über die Schnittstellen erfolgen in dieser Registerkarte. Für das Interface über SPI-Schnittstelle kann die Einstellung der Taktung für die Schnittstelle eingegeben werden. Für die SPI-Schnittstelle kann außerdem die Wartezeit nach einem Lesezugriff festgelegt werden (weiterführende Informationen dazu finden Sie im Datenblatt des AM-IP4k).

Der Bereich Konfig. Ausgang ermöglicht die Auswahl der Ausgangssignale an Konnektor X1 (ABZ, SSI oder SPI).

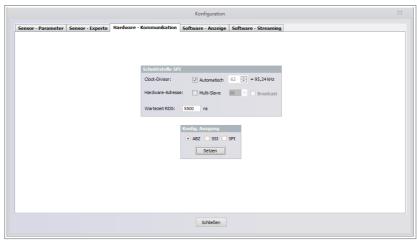


Abbildung 23: Hardware - Kommunikation

9.8.3 Software - Anzeige

Im Bereich Anzeige können Maßeinheit und Skalierung für die Darstellung des Messwertes in der Software (IP-Messung 1, Anzeige: Messwert) geändert werden. Außerdem können eventuell durch den Benutzer ausgeblendete Warn- und Hinweisdialoge wieder aktiviert werden.

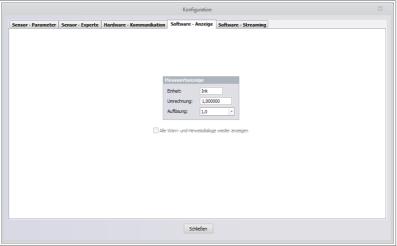


Abbildung 24: Software - Anzeige

9.8.4 Software - Streaming

Der Punkt Streaming bietet die Möglichkeit Parameter des AM-IP4k, wie z.B. korrigierte und nicht korrigierte ADC-Werte, PHI und BQ fortlaufend aufzuzeichnen. Die Daten können dann über die Exportfunktion (Extras -> Exportieren; Symbol "weiße Seite mit Pfeil") als Messdaten bzw. Rohdaten als CSV oder Matlabdaten exportiert werden. Damit ist eine nachträgliche Auswertung und Weiterverarbeitung der Daten und eine Dokumentation gegeben.

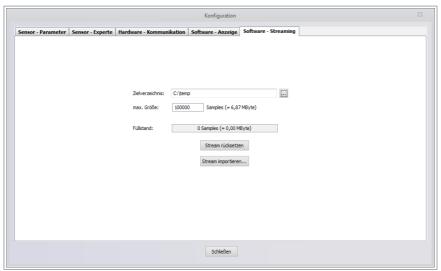


Abbildung 25: Software Streaming

9.9 Oszilloskop

Die Software bietet weiterhin die Möglichkeit, sich z.B. die ADC-Werte und Parameter des AM-IP4k grafisch anzeigen zu lassen. Prinzipiell kann zwischen dem Modus mit zeitlichem Bezug und der XY-Darstellung gewählt werden.

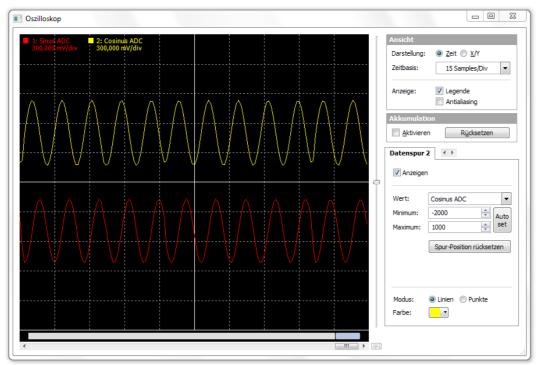


Abbildung 26: Oszilloskop - zeitliche Darstellung

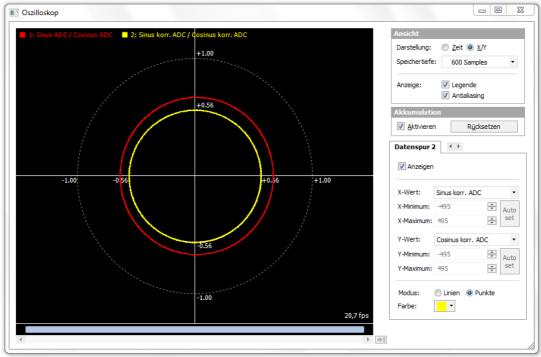


Abbildung 27: Oszilloskop - XY Darstellung

Handbuch IPE4k Bestellinformation

10 Bestellinformation

Tabelle 25: Bestellinformation IPE4k

Produkttyp	Beschreibung	Artikelnummer
IPE4k	Interpolationseinheit mit AM-IP4k (Standardkonfiguration ABZ)	PR-50410-00

10.1 Konfiguration im Auslieferungszustand

Tabelle 26: Auslieferungszustand Hardwarekonfiguration

Schnittstelle	stelle Werte	
Sensoreingang	Eingang für differentielle Eingangssignale mit $1V_{pp}$, Abschlussimpedanzen unbestückt	
Ausgangssignale	ABZ	

Tabelle 27: Auslieferungszustand Softwarekonfiguration

Parameter	Konfiguration
Interpolationsrate	4096
Referenzpunkterkennung	Aktiv
Referenzpunktbreite	1 Inkrement
Ausgangssignale	ABZ
Digitale Hysterese	Aktiv
Tiefpass am Eingang	Inaktiv
Fehlersignale	Aktiv, Speicherung erfolgt (Bit HLD im Register CFG1 des AM-IP4k gesetzt)

Dokument: PR-50410-1-1-HB-D-IPE4k-AMAC Seite: 32/34

Handbuch IPE4k Hardwareübersicht

11 Hardwareübersicht

11.1 Anschlüsse und Testpunkte

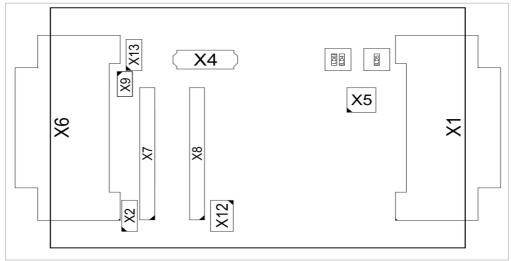


Abbildung 28: Anschlüsse und Testpunkte

11.2 Abmessungen

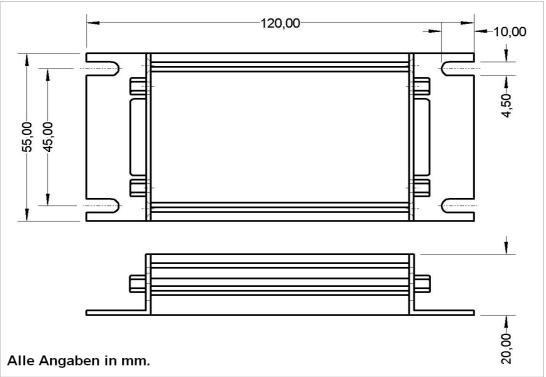


Abbildung 29: Abmessungen

Handbuch IPE4k		Notizen
12	Notizen	